Although the application of anti-seize compounds is widespread and varied across industrial environments, the use and selection of these products is often misunderstood. Anti-seize compounds, which are engineered to prevent the corrosion, galling, seizing, and stripping of bolts and fittings, are as diverse as their operations and must be properly chosen to ensure product success. Consider first, that anti-seize compounds are formulated from a variety of agents including copper, aluminum, graphite, zinc, molybdenium disulfide and nickel. The composition of your product will have a direct influence on how effective that compound is in harsh industrial settings where high temperatures and exposure to chemicals can lead to complications with the seizing and galling of fasteners. Be sure to check your product’s temperature rating and metallic composition to be certain that you are choosing the appropriate blend for your job.
Some Things to Remember:
– As a rule, nickel can withstand extreme high temperature applications up to 2,600 degrees Fahrenheit and is chemically nonreactive.
– Similarly, molybdenium disulfide (Moly) is chemically static and can withstand temperatures up to 2,400 degrees Fahrenheit.
– In standard settings ranging from 1,500-1,800 degrees Fahrenheit, anti-seize compounds composed of aluminum or copper tend to work well but, due to their reactive properties, should not be exposed to substances such as ammonia and acetylene.
– Zinc and copper based anti-seize lubricants are not recommended for use with stainless steels.
– Graphite based anti-seize compounds may be utilized where electrical conductivity is required, or in temperatures up to 2,000 degrees Fahrenheit.
In addition to composition, the application of anti-seize compounds is also of high significance, as issues can arise from improper application of these products. Anti-seize compounds serve as a lubricant and are applied to the threads of bolts and other mechanical fasteners to eliminate corrosion that causes a fastener to “seize” over time. When pieces such as these lock, the removal of a piece of equipment, or any of its components, becomes very difficult. To avoid such issues, anti-seize lubricants should be applied to the plain part of the bolt and under the head, thread, the face and both sides of the nut, plus all parts of the washer, if used. Doing so, eliminates the risk of mechanical seizing due to metal-on-metal contact. Subsequently, anti-seize compounds can also serve as a barrier to water penetration since the threads are sealed by the use of the compound. In marine environments, petroleum or synthetic blends of anti-seize are used to seal the thread or other joints. In operating environments such as these, a water washout product is required and can be tested according to ASTM D1264, “Standard Test Method for Determining the Water Washout Characteristics of Lubricating Greases”.
Leave a Reply