October 19, 2016 on 2:23 pm

Diesel engines and vehicles make up about a third of the entire transportation fleet in the U.S. Used to power diesel cars, trucks, ships, locomotives, farm, construction and mining equipment, the amount of sulfur in diesel fuel is directly linked to the amount of pollution produced when the fuel is burned in the engine. Pollution from diesel exhaust includes soot or particulate matter, hydrocarbons, carbon monoxide, oxides of nitrogen and other hazardous air pollutants, which have proven to have serious human health and environmental effects. In 2006, the EPA issued a mandate requiring that all highway diesel fuel supplied to the market after 2010 be ULSD (ultra-low sulfur diesel), reducing sulfur levels in fuel from as many as 5,000 parts per million (ppm) to 15 ppm for highway diesel vehicles. Between 2007-2014, low sulfur (500 pppm) and ULSD (15 ppm) fuel was phased in for non-road, locomotive and marine diesel fuel as well. Consequently, today’s diesel powered vehicles feature low emission engines that are environmentally advantageous, but more susceptible than ever to diesel fuel related wear. These newer engines contain an emissions-reducing device called a particulate filter that traps the tiny particles of soot in the exhaust fumes. The filter uses a sensor that measures back pressure, or the force required to push the exhaust gases out of the engine and through the tailpipes. The mandate of the EPA to reduce sulfur content of diesel fuels, however, has resulted in the elimination of certain naturally occurring, polar compounds that protect the fuel system from wear by forming a protective layer on the metal surfaces of the fuel injection system. The increased use of the hydrotreating and hydrocracking refining processes to produce the maximum 15 ppm ultra low sulfur diesel fuel causes these naturally occurring polar compounds to become either chemically altered or entirely removed, resulting in the need for diesel fuel additives to enhance the quality and efficiency of fuels. Although, in theory, proper additives should already be mixed into your fuel upon purchase, extensive research has revealed wide gaps in the quality of diesel fuel available in different countries. “Premium” diesel is defined by four properties: cetane number, low-temperature operability, thermal stability and fuel-injector cleanliness, but regulations are lax at best. The number and types of additives can vary considerably and some, such as water removers, are not utilized at all by petroleum refineries. Such substandard fuels have the tendency to wear vital components, cause stickiness in valves and clog filters, potentially resulting in decreased engine life.  Aftermarket fuel additives, on the other hand, contain additives that refineries and distributors don’t use, working against the majority of problems related to diesel fuel quality. Among the many benefits that fuel additives offer are:

  • Enhanced Safety: Users of fuel additives experience a reduced risk of of static discharge, which can result in fire and explosions
  • Cost Savings: Fuel additives help protect fuel tanks, pipelines and other equipment from corrosion and fuel system equipment from premature wear
  • Performance Enhancement: Optimized vehicle performance and economy resulting in fuel savings
  • Reduced Emissions: Cleaner fuel systems and combustion optimization
  • Higher Cetane Numbers: Improved cold temperature starting and idling for all engines
  • Low-Temperature Operability: Fuel won’t gel up and clog the fuel lines or fuel filter
  • Fuel Injector Cleanliness: Added detergents that help keep fuel injectors clean
  • Increased Lubricity: Low sulfur fuel has less lubricity and absorbs water more readily. Many additives have a lubricity improver by itself or in combination with other chemicals
  • Increased Thermal Stability: Fuel additives can help support the fuel’s ability to resist particle formation as it circulates from the tank to the engine and back again

The EPA regulates additives due to their impact on emissions. Among those registered and deemed compliant with the EPA’s standards are Schaeffer Fuel Additives. Schaeffer products undergo a rigorous testing and development process to ensure quality and compatibility, in addition to stringent performance standards. Schaeffer is commited to manufacturing products that are not only cost effective, but environmentally responsible. Their biodegradable oils provide superior protection in environmentally sensitive areas while protecting equipment and reducing energy. For a current list of registered EPA manufacturers or to learn more about Schaeffer Oil additives be sure to visit the EPA website.

schaeffer-fuel-additives

 

 

 

 

October 10, 2016 on 9:06 pm

Industries today are toting the advantages of powder coated finishes!  A notable alternative to liquid paint, powder coating has gained popularity as a dry finishing process used to protect the toughest industrial machinery, as well as common household items including electronics and appliances. The powder used in this process is comprised of finely ground particles of pigment and resin, which are sprayed onto a surface to be coated and baked to a fluid state. Powder coated products have proven to be more durable and resistant to moisture, chemicals and ultraviolet light than liquid paints, while toting an attractive and high-quality finish. Whereas, standard paints can take days to cure and are dependent on atmospheric conditions, powder coated products are ready to use within 20 minutes of heat curation and produce a much thicker coating that will not sag or run. In addition, powder coatings meet all Environmental Agency Protection requirements for air and water pollution control. These materials are generally free of volatile organic compounds (VOCs) and the potentially harmful solvents found in wet paints, minimizing risks to workers and reducing industrial pollution concerns.

Powder coating can be divided into two primary categories; thermoplastic powder and thermoset polymer. Thermoset powder coating differs from thermoplastic powder in that it undergoes a chemical change as it cures and cannot be remelted or reused. This change is referred to as crosslinking. On the other hand, thermoplastic powders remain chemically unchanged throughout the process  and are able to be reused and remelted. This type of paint is generally applied to a part that is is heated to a temperature well above the powder’s melting point, causing the powder to melt and form a scratch-resistant, uniform film of paint.

The four basic resins used for thermoset powders are epoxy, acrylic, polyester and fluropolymer.  Polyester resins rank high in popularity among powder coating paints, as they offer excellent corrosion protection and extreme weather protection. On the contrary, expoxy-based powder coating is typically limited to indoor applications due to its ultraviolet and harsh weather sensitivity. In architectural and highly corrosive environments, fluoropolymer powders fare well due to their high quality, weather-resistant finish, while acrylic thermosetting powders offer a chip-resistant, high-gloss finish ideal for the automotive industry.

Powder coating involves a multi-step process which includes part preparation, powder application and high-temperature powder curing. Prior to coating, each part must be properly cleaned of dirt, grease, oil, metal oxides, or other substances that may interfere with the painting process. Poor pretreatment practices may lead to a number of issues including loss of adhesion, pinholing, outgasing, weld pull away and premature coating failure in harsh environments such as salt air. In order to achieve superior performance and weathering characteristics, a good pretreatment, such as etching or phosphating is recommended. Such treatments help prevent flash rust prior to powder coating and provide for long-lasting physical bonds.

Alvin’s Lab-Metal and Hi-Temp Lab Metal may be used to patch, smooth, repair and seal items that need to be powder coated. An ideal filler for dents, voids cracks and other surface blemishes, Lab-Metal Repair and Patching compound adheres well to most clean, dry surfaces and can withstand vibration and other difficult conditions. For powder coating processes running above 425 degree F. Hi-Temp Lab-Metal must be used and applied in thin, 1/4 inch, layers. Allow for a minimum drying time of 24 hours, then heat cure. Lab-Metal, on the other hand, may only be used in instances where metal parts will not be exposed to temperatures topping 425 degrees F. for longer than 20 minutes and should be applied no thicker than 3/8 inch.

Following pretreatment, the object must be completely dried before powder is applied. The most common way of applying a powder coating is through the use of an electrostatic gun. The powder is electrically charged as it is applied to the part, giving each particle of the powder a negative charge. The part being powder coated is electrically grounded as a means of attracting and attaching the powder to the part’s surface. This electrostatic attraction is a key element in the process, aiding the coating evenness and the speed of applying the coating. The result is a uniform coating of dry powder clinging to the part.

Once the part is coated with powder, it must be moved into a curing oven. There the powder gels, flows and cures to produce a smooth, durable powder coat finish. During the curing process, crosslinking takes place. It is at this point that the part can be removed from the oven, cooled in ambient air, and put into service.