October 19, 2016 on 2:23 pm

Diesel engines and vehicles make up about a third of the entire transportation fleet in the U.S. Used to power diesel cars, trucks, ships, locomotives, farm, construction and mining equipment, the amount of sulfur in diesel fuel is directly linked to the amount of pollution produced when the fuel is burned in the engine. Pollution from diesel exhaust includes soot or particulate matter, hydrocarbons, carbon monoxide, oxides of nitrogen and other hazardous air pollutants, which have proven to have serious human health and environmental effects. In 2006, the EPA issued a mandate requiring that all highway diesel fuel supplied to the market after 2010 be ULSD (ultra-low sulfur diesel), reducing sulfur levels in fuel from as many as 5,000 parts per million (ppm) to 15 ppm for highway diesel vehicles. Between 2007-2014, low sulfur (500 pppm) and ULSD (15 ppm) fuel was phased in for non-road, locomotive and marine diesel fuel as well. Consequently, today’s diesel powered vehicles feature low emission engines that are environmentally advantageous, but more susceptible than ever to diesel fuel related wear. These newer engines contain an emissions-reducing device called a particulate filter that traps the tiny particles of soot in the exhaust fumes. The filter uses a sensor that measures back pressure, or the force required to push the exhaust gases out of the engine and through the tailpipes. The mandate of the EPA to reduce sulfur content of diesel fuels, however, has resulted in the elimination of certain naturally occurring, polar compounds that protect the fuel system from wear by forming a protective layer on the metal surfaces of the fuel injection system. The increased use of the hydrotreating and hydrocracking refining processes to produce the maximum 15 ppm ultra low sulfur diesel fuel causes these naturally occurring polar compounds to become either chemically altered or entirely removed, resulting in the need for diesel fuel additives to enhance the quality and efficiency of fuels. Although, in theory, proper additives should already be mixed into your fuel upon purchase, extensive research has revealed wide gaps in the quality of diesel fuel available in different countries. “Premium” diesel is defined by four properties: cetane number, low-temperature operability, thermal stability and fuel-injector cleanliness, but regulations are lax at best. The number and types of additives can vary considerably and some, such as water removers, are not utilized at all by petroleum refineries. Such substandard fuels have the tendency to wear vital components, cause stickiness in valves and clog filters, potentially resulting in decreased engine life.  Aftermarket fuel additives, on the other hand, contain additives that refineries and distributors don’t use, working against the majority of problems related to diesel fuel quality. Among the many benefits that fuel additives offer are:

  • Enhanced Safety: Users of fuel additives experience a reduced risk of of static discharge, which can result in fire and explosions
  • Cost Savings: Fuel additives help protect fuel tanks, pipelines and other equipment from corrosion and fuel system equipment from premature wear
  • Performance Enhancement: Optimized vehicle performance and economy resulting in fuel savings
  • Reduced Emissions: Cleaner fuel systems and combustion optimization
  • Higher Cetane Numbers: Improved cold temperature starting and idling for all engines
  • Low-Temperature Operability: Fuel won’t gel up and clog the fuel lines or fuel filter
  • Fuel Injector Cleanliness: Added detergents that help keep fuel injectors clean
  • Increased Lubricity: Low sulfur fuel has less lubricity and absorbs water more readily. Many additives have a lubricity improver by itself or in combination with other chemicals
  • Increased Thermal Stability: Fuel additives can help support the fuel’s ability to resist particle formation as it circulates from the tank to the engine and back again

The EPA regulates additives due to their impact on emissions. Among those registered and deemed compliant with the EPA’s standards are Schaeffer Fuel Additives. Schaeffer products undergo a rigorous testing and development process to ensure quality and compatibility, in addition to stringent performance standards. Schaeffer is commited to manufacturing products that are not only cost effective, but environmentally responsible. Their biodegradable oils provide superior protection in environmentally sensitive areas while protecting equipment and reducing energy. For a current list of registered EPA manufacturers or to learn more about Schaeffer Oil additives be sure to visit the EPA website.






October 10, 2016 on 9:06 pm

Industries today are toting the advantages of powder coated finishes!  A notable alternative to liquid paint, powder coating has gained popularity as a dry finishing process used to protect the toughest industrial machinery, as well as common household items including electronics and appliances. The powder used in this process is comprised of finely ground particles of pigment and resin, which are sprayed onto a surface to be coated and baked to a fluid state. Powder coated products have proven to be more durable and resistant to moisture, chemicals and ultraviolet light than liquid paints, while toting an attractive and high-quality finish. Whereas, standard paints can take days to cure and are dependent on atmospheric conditions, powder coated products are ready to use within 20 minutes of heat curation and produce a much thicker coating that will not sag or run. In addition, powder coatings meet all Environmental Agency Protection requirements for air and water pollution control. These materials are generally free of volatile organic compounds (VOCs) and the potentially harmful solvents found in wet paints, minimizing risks to workers and reducing industrial pollution concerns.

Powder coating can be divided into two primary categories; thermoplastic powder and thermoset polymer. Thermoset powder coating differs from thermoplastic powder in that it undergoes a chemical change as it cures and cannot be remelted or reused. This change is referred to as crosslinking. On the other hand, thermoplastic powders remain chemically unchanged throughout the process  and are able to be reused and remelted. This type of paint is generally applied to a part that is is heated to a temperature well above the powder’s melting point, causing the powder to melt and form a scratch-resistant, uniform film of paint.

The four basic resins used for thermoset powders are epoxy, acrylic, polyester and fluropolymer.  Polyester resins rank high in popularity among powder coating paints, as they offer excellent corrosion protection and extreme weather protection. On the contrary, expoxy-based powder coating is typically limited to indoor applications due to its ultraviolet and harsh weather sensitivity. In architectural and highly corrosive environments, fluoropolymer powders fare well due to their high quality, weather-resistant finish, while acrylic thermosetting powders offer a chip-resistant, high-gloss finish ideal for the automotive industry.

Powder coating involves a multi-step process which includes part preparation, powder application and high-temperature powder curing. Prior to coating, each part must be properly cleaned of dirt, grease, oil, metal oxides, or other substances that may interfere with the painting process. Poor pretreatment practices may lead to a number of issues including loss of adhesion, pinholing, outgasing, weld pull away and premature coating failure in harsh environments such as salt air. In order to achieve superior performance and weathering characteristics, a good pretreatment, such as etching or phosphating is recommended. Such treatments help prevent flash rust prior to powder coating and provide for long-lasting physical bonds.

Alvin’s Lab-Metal and Hi-Temp Lab Metal may be used to patch, smooth, repair and seal items that need to be powder coated. An ideal filler for dents, voids cracks and other surface blemishes, Lab-Metal Repair and Patching compound adheres well to most clean, dry surfaces and can withstand vibration and other difficult conditions. For powder coating processes running above 425 degree F. Hi-Temp Lab-Metal must be used and applied in thin, 1/4 inch, layers. Allow for a minimum drying time of 24 hours, then heat cure. Lab-Metal, on the other hand, may only be used in instances where metal parts will not be exposed to temperatures topping 425 degrees F. for longer than 20 minutes and should be applied no thicker than 3/8 inch.

Following pretreatment, the object must be completely dried before powder is applied. The most common way of applying a powder coating is through the use of an electrostatic gun. The powder is electrically charged as it is applied to the part, giving each particle of the powder a negative charge. The part being powder coated is electrically grounded as a means of attracting and attaching the powder to the part’s surface. This electrostatic attraction is a key element in the process, aiding the coating evenness and the speed of applying the coating. The result is a uniform coating of dry powder clinging to the part.

Once the part is coated with powder, it must be moved into a curing oven. There the powder gels, flows and cures to produce a smooth, durable powder coat finish. During the curing process, crosslinking takes place. It is at this point that the part can be removed from the oven, cooled in ambient air, and put into service.

September 30, 2016 on 7:27 pm

In industrial environments, the buildup of substances such as grease, oil, dust, paint, lubricants, rust, minerals, fats, proteins and clay can be highly detrimental to machinery and precautions must be taken to ensure that vital components are kept free from such residue. Degreasers, consequently, play a critical role in proper maintenance routines, as they prevent the breakdown of equipment caused by contamination and help significantly lower repair costs. Comprised of a combination of surfactants (compounds that reduce the surface tension between two liquids or between a liquid and a solid), sequestering agents and alkaline builders, most degreasers operate on the same chemical principle. A long hydrophobic chain at one end of the molecule is attracted to oil and grease while the hydrophilic end is attracted to water. The hydrophobic molecules surround the oil particles and dislodge it from water allowing the surface to be rinsed clean of hazardous contaminants.

Depending on the kind of contaminant that you are trying to remove, there are many options available on the market today that can help you rid your parts of harmful impurities. Today’s degreasers are formulated to tackle both inorganic and organic soils, or a mixture of both. Organic soils include, but are not limited to, fat, grease, protein, mold, yeast, bacteria and petroleum. Inorganic soils consist of rust, scale, minerals, clay, silt, sand and hard water deposits. Soils that consists of both inorganic and organic materials are often the most difficult to remove and, in the past, have necessitated the use of a highly concentrated, solvent-based formula. However, advances in surfactant technology have resulted in the development of environmentally friendly degreasers, such as the ones below, that are safe to use and just as effective. Lets uncover the dirt on these degreasers!

  • Tri-Flow Foaming Citrus Degreaser: Cuts through and cleans the toughest grease, dirt and oil.  This biodegradable formula clings to vertical surfaces, does not leave a residue or require rinsing.
  • Torque Drive (By Detroit Garage Works): Removes a wide variety of oils, grease, transmission fluid and other contaminates from concrete, shop floors and driveway surfaces. This water-based, ready to use, industrial strength cleaner contains no caustics, petroleum solvents or phosphates. Fast acting and effective, water-based degreasers, such as Torque Drive, provide an economical advantage to their solvent based counters, as they may be dilluted with water.
  • Citrol (By Schaeffer): A biodegradable cleanser designed for use in almost any industrial transportation or general plant maintenance cleaning and degreasing operation. This citrus-based degreaser rapidly removes grease dirt, rubber, oil, inks and soils without rusting or corroding metal surfaces.
  • Detroit B.A.D. Oil Degreaser: A multi-purpose cleaner free of harmful solvents, phenol, caustics, acids and phosphates! Ideal for use on metals, concrete, fabrics, engine parts, tires and wheels, decks, patio furniture and more. This concentrated formula may be diluted or RTU for extra-heavy soils.
September 9, 2016 on 4:38 pm

The utilization of rubber dates as far back as 1770, when, presumably, English scientist, Joseph Priestly, discovered that it could be used to “rub” away the marks left by pencils. During those times, rubber was derived naturally from a milky liquid (latex) produced under the bark of the “cahuchu” (or rubber tree) in tropical regions of South America. Used by the indigenous peoples of the Americas to make bouncy balls, waterproof handmade buckets, pails, clothes, shoes and more, the use of this naturally occurring substance soon became widespread. During World War II, the demand for rubber in the United States began to outweigh the available supply due to the country’s separation from its sources in the Pacific. As a result, the American government began to look toward the development of synthetic alternatives to meet this growing need. Between 1941 and 1945, synthetic rubber production increased from 8,000 to 820,000 tons. Today, there are approximately twenty varieties of synthetic rubbers being manufactured throughout the world including acrylic, isoprene, polysulfide, nitrile, butadiene, butyl and silicone.

How rubber is used in today’s ever evolving world, depends largely on the physical and chemical properties of the material. The fact that rubber can be either hard or soft, significantly increases its functionality and range of applications. Hard rubber is used on the rigid outer surface of your vehicle’s tires. It’s strength, water and heat resistance benefits make it an ideal material for tire production. On the other hand, flexible, butyl rubber, is used on the inner portion of tires, as its airtight properties trap gases so tires stay inflated longer. Soft rubber is also used in the manufacturing of mats, protective gloves, adhesives and paints, while harder rubbers are utilized in the production of rigid inflatable boats, roofing membranes and flooring.

Perhaps one of the most innovative applications of rubber in recent times involves the development of a product called Rubber In A Can. Used to fill in, and seal, cracks, leaks and small holes, rubber in a can comes in an easy to spray aerosol canister. This black, rubberized liquid, creates a tight rubber surface drying to a flexible, rubberized watertight coating that will not crack, peel or chip in either hot or cold temperatures. Long lasting and durable, spray rubber in a can may be used on gutters, duct work, pvc pips, cars, weld joints, wheel wells, truck beds, foundations, gas tanks, driveways, HVAC equipment and more. This flexible liquid rubber can be painted once dry and will adhere to any metal, concrete/asphalt, or rigid plastic surface. To use, shake well and apply to a clean, dry surface (temperature should be above 50 degrees Fahrenheit). Hold the can 10-15 inches away from the surface, applying multiple coats. For optimal performance benefits, do not overspray as thick coats may take longer to dry and can result in dripping or sagging of vertical surfaces. After each use, invert can and spray one quick burst to clear nozzle.



September 2, 2016 on 11:44 pm

On Labor Day we take “time time off” to honor the contributions of many hardworking Americans. Although Labor Day may be rooted in lofty ideals, for many, it serves as a day to chip away at unfinished home improvement projects, much like “Tim the Toolman Taylor”. The projects that you were going to complete, when summer was on the horizon, are now staring you dead in the face. And as if you didn’t already feel inadequate enough, you now have Pinterest to thank for all of the “inspiring” DIY ideas that your wife has pinned to your Lazy Boy recliner.  Thankfully, we’ve got you covered. Here are some great “tools” to help you get started and rest easy this holiday weekend.

The Table Saw

Although table saws have become a subject of concern in recent years, due to the number of injuries resulting from their use, they are still, undoubtedly, one of the most powerful pieces of equipment available for DIY aspirers.  The most versatile and productive of all woodworking machines, this single tool can rip, cross-cut, miter-cut, square, dado, rabbet, and even apply shapes to edges of wood stock. Table saws can be used to cut sheet plastic, aluminum, melamine and even tile. It is important, however, that you understand which blade to use, as dull, or unbefitting blades, can compromise your safety on the job and the quality of your work. Consider the materials that the blade will be used to cut and what type of saw it will be used in. As a general rule, blades with more teeth result in a smoother cut, and blades with fewer teeth remove material faster. In addition, the size of the gullet, tooth configuration and hook angle factor are all critical components of selecting the appropriate blade for your job. Be sure to keep the area you are working in clean and free from dust.  Allowing debris to build up around your saw is hazardous and should be avoided. Products, such as GlideCote, by Bostik, feature a unique technology that drastically reduces sliding friction and eliminates surface “hang ups” on table saws while repelling dust, dirt and moisture. Furthermore, riving knives, when properly adjusted, greatly reduce the possibility of kickback, which is the most common injury resulting from the use of table saws. Located behind the blade, the riving knife holds the saw kerf open and prevents the stock from closing in on the blade and binding.

The Adjustable Wrench

Also recommended for DIY “enthusiasts” is an adjustable wrench, sometimes referred to as the “irreplaceable wrench” due to its tremendous versatility. Adjustable wrenches may be used for a multitude of home improvement projects, as they have an modifiable “jaw” that can accommodate nuts and bolts of various sizes. Engineered to move in only one direction, the adjustable wrench limits the amount of stress placed on the screw that sits just below the head of the wrench. Due to the wrench’s slightly offset head, loosening and tightening is also easier. Adjustable wrenches come in three different varieties; the crescent wrench, perhaps, being the most common. These wrenches are available in multiple sizes and work well on pipes, faucets, bike and vehicle repairs. The monkey wrench is ideal for bathroom and kitchen home repairs, such as toilet seats, drains, the kitchen sink, garbage disposal and showers.  Its long handle allows users to apply their weight to the wrench, unquestionably tightening objects into place. The final type of wrench is referred to as a pipe, or “Stilson”, wrench. These wrenches are typically used to tighten or loosen pipe joints. They have a self-tightening adjustment that makes them ideal for use on both small and large pipes.

Spray Adhesives

Spray adhesives disperse in fine droplets to provide a thin, uniform bonding surface. They can be used as a substitute for hot glue, tape and other adhesives in projects ranging from wallpaper borders to the making and decoration of furniture. Spray adhesives boast varying degrees of adhesive strength, so one must first consider the application of these products before making a purchase for their project. Some spray adhesives are designed for use with only one or two materials, while others can bond to a variety of surfaces. Drywall tinted adhesive, for example, is used to attach plastic corner beads to drywall, while rubber and vinyl spray adhesives are formulated to adhere to leather, laminate, wood, rubber, and plastic products. To use, prepare the work surface in advance by making sure that the area is free of dirt, oil or moisture. Next, protect yourself and the surrounding areas and make sure that there is adequate ventilation, as spray adhesives emit fine particles that can be inhaled. Apply a thin strip of the adhesive to a test area before using and read instructions completely. Once tested, spray light, even, coats to the entire surface. Be sure to hold the can upright and spray from a recommended distance of approximately 1/2 foot for optimum coverage.


August 28, 2016 on 7:28 pm

Although the application of anti-seize compounds is widespread and varied across industrial environments, the use and selection of these products is often misunderstood. Anti-seize compounds, which are engineered to prevent the corrosion, galling, seizing, and stripping of bolts and fittings, are as diverse as their operations and must be properly chosen to ensure product success. Consider first, that anti-seize compounds are formulated from a variety of agents including copper, aluminum, graphite, zinc, molybdenium disulfide and nickel. The composition of your product will have a direct influence on how effective that compound is in harsh industrial settings where high temperatures and exposure to chemicals can lead to complications with the seizing and galling of fasteners. Be sure to check your product’s temperature rating and metallic composition to be certain that you are choosing the appropriate blend for your job.

Some Things to Remember:

As a rule, nickel can withstand extreme high temperature applications up to 2,600 degrees Fahrenheit and is chemically nonreactive.

Similarly, molybdenium disulfide (Moly) is chemically static and can withstand temperatures up to 2,400 degrees Fahrenheit.

In standard settings ranging from 1,500-1,800 degrees Fahrenheit, anti-seize compounds composed of aluminum or copper tend to work well but, due to their reactive properties, should not be exposed to substances such as ammonia and acetylene.

– Zinc and copper based anti-seize lubricants are not recommended for use with stainless steels.

– Graphite based anti-seize compounds may be utilized where electrical conductivity is required, or in temperatures up to 2,000 degrees Fahrenheit.

In addition to composition, the application of anti-seize compounds is also of high significance, as issues can arise from improper application of these products. Anti-seize compounds serve as a lubricant and are applied to the threads of bolts and other mechanical fasteners to eliminate corrosion that causes a fastener to “seize” over time. When pieces such as these lock, the removal of a piece of equipment, or any of its components, becomes very difficult. To avoid such issues, anti-seize lubricants should be applied to the plain part of the bolt and under the head, thread, the face and both sides of the nut, plus all parts of the washer, if used. Doing so, eliminates the risk of mechanical seizing due to metal-on-metal contact. Subsequently, anti-seize compounds can also serve as a barrier to water penetration since the threads are sealed by the use of the compound. In marine environments, petroleum or synthetic blends of anti-seize are used to seal the thread or other joints. In operating environments such as these, a water washout product is required and can be tested according to ASTM D1264, “Standard Test Method for Determining the Water Washout Characteristics of Lubricating Greases”.

August 23, 2016 on 3:40 am

Advancements in LED technology are having a significant impact on energy consumption in the United States. With products boasting up to 85% energy savings, extended operational lifetimes and low carbon dioxide emissions, it is no surprise that LED flashlight bulbs have also gained immense popularity with consumers as a portable lighting option. LED flashlights emit light through a light-emitting diode (LED), rather than a traditional filament wire which depends upon electricity from the batteries to heat the wire and, consequently, produce light. With LED alternatives, energy is conserved and bulbs do not need to be replaced regularly due to burned out wires. LED flashlights, in fact, only draw 5-10% of the the power of an equivalent light bulb and can hold up under 5-10 years of consistent use!

Distinguishing between truth and hype, however, can be tricky in a market saturated with products toting superior performance, durability and prolonged battery life. When determining which LED flashlight is right for you, the following factors should be duly noted.

  1.  Lumens:  Light output is measured in lumens and can range from 20 lumens all the way to 3500! However, one must note that beam intensity, distance and type all impact the effectiveness of a light in different applications and should be thoughtfully considered in conjunction with light output properties.
  2.  Beam distance:  Beam distance is measured in meters and indicates how far a light will shine before the brightness diminishes to that emitted by the full moon.
  3.  Run time:  Run time is measured in hours and is determined by the length of time it takes the light output to drop to 10% of the rated output on new batteries, rounded to the nearest quarter hour.
  4.  Impact Resistance:  Impact resistance is measured in meters and illustrates how susceptible a flashlight is to damage after suffering some accidental drops.
  5.  Water resistance:  A rating of IPX4 suggests that the light is splash resistant from all angles, while an IPX7 rating implies that the light can withstand temporary immersion; up to 30 minutes at a depth of 1 m. Flashlights bearing an IPX8 rating may be submersed in water up to 4 hours at the specified depth while remaining protected.

Aside from the aforementioned characteristics, the type and availability of batteries for your flashlight is also worth noting. Some available options include disposable, rechargeable and renewable batteries. Although conventional alkaline batteries, such as AA or AAA, are readily available and have a longer shelf life, they are more prone to leaking if stored for long periods of time. On the other hand, built-in, rechargeable lithium batteries pack a heavier price tag, but limit waste and render lower operational costs over time.

The type of flashlight that you ultimately choose to purchase will depend on your unique needs.  LED flashlights come in a variety of sizes and weights, ranging from tiny coin cell key chains to large, stand-mounted work lights that are perfect for industrial applications. Larger flashlights are typically tougher and exhibit longer run times due to their larger battery capacity, while plastic bodies are lighter, but far less durable. Understanding these various components, however, will take you a long way in finding the flashlight that is just right for you.





August 19, 2016 on 4:38 pm

The versatility of oil-based paint markers have made them an ideal solution for many industrial applications that require a specialized paint marker to withstand harsh environmental conditions. Ideal for use on a variety of surfaces including metal, wood, iron, plastic, glass, rubber and cloth, these markers tote excellent durability and wear resistance from common solvents and extreme temperatures. Although some paint markers come with an already primed paint tip, most solvent-based paint markers do not.  To use these markers, first shake and mix thoroughly before removing the paint cap. Next, push down gently on the spring loaded tip and pump it once.  This process will help move the paint from the barrel of the marker to the non-charged empty tip. However, you may notice that no paint appears at first. Be patient and do not over-pump. Repeat one or two additional times, until you see the paint begin to materialize. Once your work is complete, be sure to put the cap back on tightly. When not in use, paint will harden when exposed to air.  This hardened tip can obstruct the flow of additional paint through the marker making it unusable. Look for caps with vapor seals which will are designed to keep the air out and help extend the life of your marker.

Although the uses and applications of oil-based paint markers extend well beyond the industrial realm, users must be mindful of the fact that many oil-based markers contain toxic chemical solvents and should not be used by unsupervised children. Fortunately, manufacturers such as Markal, now offer xylene free paint products that help reduce user health risks and  and eliminate California Proposition 65, EPA HAPS and SARA 313 concerns in the U.S.A..




August 14, 2016 on 5:38 am

Did you know that there are more than 200 diseases spread through food alone? The CDC estimates that each year roughly 1 in 6 Americans (or 48 million people) get sick, 128,000 are hospitalized, and 3,000 die of foodborne illnesses. Everybody has a role to play in keeping food safe, including governments, industry, producers, academia and consumers. It is important that we, as producers and consumers, not only understand how to handle food safely, but also familiarize ourselves with common hazards that may present indirect health risks. For the most part, we take great care to handle, prepare and store food in ways that make it safe for us to eat.  We make sure that our foods are cooked at proper temperatures, use clean water and take appropriate measures to keep raw foods away from cooked foods in order to prevent contamination. Although we take great strides to assure that food is handled safely, did you realize that just about every area of a food processing facility comes into contact with chemicals that present a potential cross contamination risk? Think about it. Everyday our food is being produced on equipment that requires the use of chemicals, anti-rust products and cleaning agents to properly maintain and operate such machines. In an effort to combat these potential hazards, in 1999, the USDA developed product registration codes to ensure that all products intended for specific applications are reviewed equally against the necessary criteria for that product’s end user. Today, NSF International, a not for profit health organization oversees the evaluation of food grade lubricants and other food processing substances. In order to register a food grade product, manufacturers must submit their product formulation and label to the NSF, where it is subject to independent review before being approved and listed. When sourcing out chemicals to use in the food industry it is critical that you acquaint yourself with the following product category codes and their acceptable applications in an effort to help protect public health and safety.


  • H1 lubricants, such as Vibra-Tite 908 and Sprayon LU 210, are food-grade lubricants safe for use in food-processing environments where there is the possibility of incidental food contact. Although this category implies the potential for food contact, it is recommended that the minimum amount of lubricant be used in order to prevent residual buildup which can present an authentic risk.
  • H2 lubricants, on the other hand, are not intended to be in contact with food at any time.


  • Al cleaners, general cleaners, can be used on all surfaces and around food processing areas, but are not intended for direct food contact.
  • A8 degreasers or carbon removers are safe for use on food cooking or smoking equipment, utensils or other food processing areas where it does not come into direct contact with food.

Non-Processing Area Products:

  • C1 general cleaners are approved for use in inedible product processing areas, non-processing areas, and/or exterior areas of food processing establishments. Such cleaners, however, must not be used to mask unsanitary conditions and fragrances cannot penetrate into edible product areas.
  • C2 cleaners may be used in toilets and/or dressing rooms of food processing establishments where edible products are neither processed or stored in open containers.

Water Treatment Products: 

  • G5 products are acceptable for treatment of cooling and retort water in and around food processing areas.
  • G6 products may be used to treat boilers or steam lines where steam produced may contact edible products and/or cooling systems where the treated water may not contact edible products.
  • G7 products may be used to treat boils, steam lines, and/or cooling systems where neither the treated water nor the steam produced may contact edible products

(Information courtesy of NSF International)


August 10, 2016 on 5:30 pm

The cosmetic isles in every store are amok with products that boast their age defying powers and skin solution capabilities.  With so many choices, how do you begin to choose the brand that is best for you? To begin with, it is important to note that moisturizers can be categorized into four different types; occlusives, humectants, emollients and rejuvenators. Occlusives prevent evaporation from the skin by forming a layer on the surface of the skin that repels water and provides an external barrier to water loss. On the contrary, Humectants work to increase the water content of the skin by enhancing water absorption from the protective outer layer of the skin into the epidermis. The third class of moisturizers, emollients, fill in any spaces or gaps between skin cells that are missing moisturizing lipids,  such as fats and oils. Finally, rejuvenators are designed to replace crucial proteins in the skin. (Source: Nolan, K. and Marmur, E. (2012), Moisturizers: Reality and the skin benefits. Dermatologic Therapy, 25: 229–233.   When choosing between these various groups of moisturizers there are several factors to take into consideration. First, consider the environment that you live in. Occlusives are most effective in humidity void regions while humectants, which absorb water from the air, depend upon high humidity levels.  When browsing for moisturizers, keep in mind  that lotions, such as Spezial Lotion D by Peter Greven,  are droplets of water mixed in oil, meaning that they have a high oil to water ratio and work well in the warm, humid summer months. Creams, such as Lindesa and Spezial Creme C,  on the other hand, have a high water and low oil content and are best used during the winter months, as they create a layer of oil that locks moisture in. The water does not evaporate and the skin stays hydrated. (Source: Jeffrey Benabio, MD) In addition, age, genetics, hormones and ethnicity all play a role in determining your skin type and consequently, the type of moisturizer that will ultimately work best for you.